

SGM8543 1.1MHz, 48µA, Rail-to-Rail I/O, CMOS Operational Amplifier with Shutdown

GENERAL DESCRIPTION

The SGM8543 is a low cost, single rail-to-rail input and output voltage feedback amplifier with shutdown function. It has a wide input common mode voltage range and output voltage swing, and takes the minimum operating supply voltage down to 2.1V. The maximum recommended supply voltage is 5.5V.

The SGM8543 provides 1.1MHz bandwidth at a low current consumption of 48µA. Very low input bias current of 0.5pA enables the SGM8543 to be used for integrators, photodiode amplifiers and piezoelectric sensors. Rail-to-rail input and output are useful to designers for buffering ASIC in single-supply systems.

Applications for this amplifier include safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems.

The SGM8543 is available in Green SOIC-8 and SOT-23-6 packages. It is specified over the extended -40°C to +125°C temperature range.

FEATURES

- Low Cost
- Rail-to-Rail Input and Output
- Input Offset Voltage: 3.5mV (MAX)
- Unity Gain Stable
- Very Low Input Bias Current: 0.5pA
 Supply Voltage Range: 2.1V to 5.5V
- Input Voltage Range:
 - -0.1V to 5.6V with $V_S = 5.5V$
- Gain-Bandwidth Product: 1.1MHz
- Low Supply Current: 48μA
 - Supply Current is 10nA When Disabled
- Available in Green SOT-23-6 and SOIC-8 Packages

APPLICATIONS

ASIC Input or Output Amplifiers

Sensor Interfaces

Piezoelectric Transducer Amplifiers

Medical Instrumentation

Mobile Communications

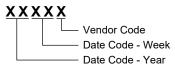
Audio Outputs

Portable Systems

Smoke Detectors

Mobile Telephones

PCMCIA Cards


Battery-Powered Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
CCM0E42	SOT-23-6	-40°C to +125°C	SGM8543XN6/TR	8543	Tape and Reel, 3000
SGM8543	SOIC-8	-40°C to +125°C	SGM8543XS/TR	SGM8543XS XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Range	e
(-V	$V_{\rm S}$) - 0.3V to (+ $V_{\rm S}$) + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s).	+260°C
ESD Susceptibility	
HBM	3000V
MM	400V

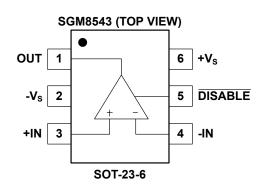
RECOMMENDED OPERATING CONDITIONS

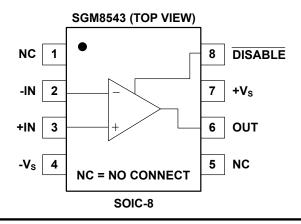
Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any

conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

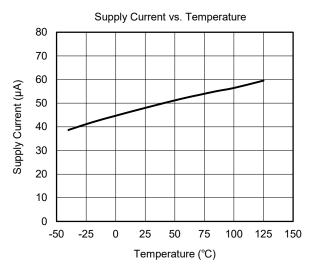

ESD SENSITIVITY CAUTION

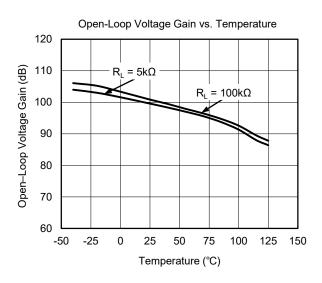

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

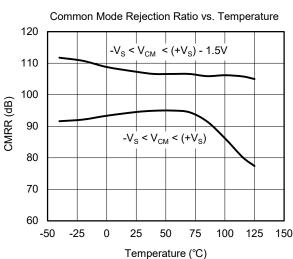
DISCLAIMER

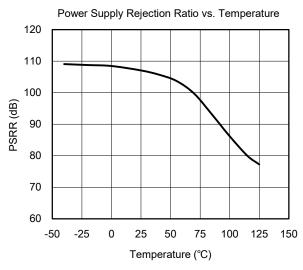
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

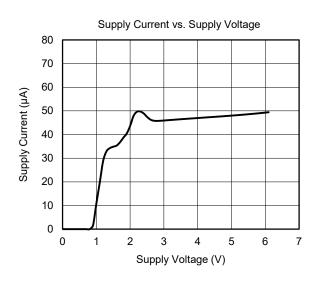
PIN CONFIGURATIONS

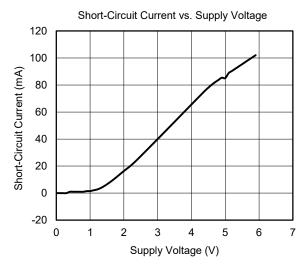


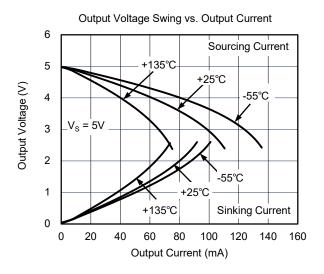

ELECTRICAL CHARACTERISTICS

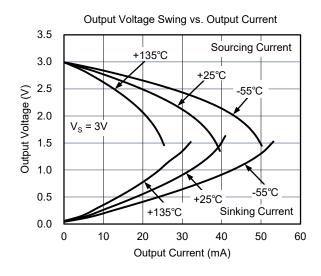

(At V_S = 5V, R_L = 100k Ω connected to $V_S/2$ and V_{OUT} = $V_S/2$, unless otherwise noted.)

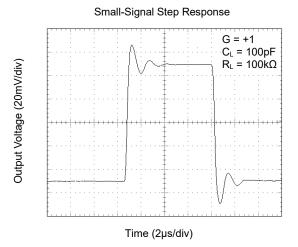

		TYP		P MIN/MAX OVER TEMPERA			ATURE
PARAMETER	SYMBOL	CONDITIONS	+25℃	+25℃	-40°C to +125°C	UNITS	MIN/MAX
INPUT CHARACTERISTICS							
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.8	3.5	8.6	mV	MAX
Input Bias Current	I _B		0.5			pА	TYP
Input Offset Current	Ios		0.5			pА	TYP
Logic Low Voltage	V _{IL}			0.8		V	MAX
Logic High Voltage	V _{IH}			2		V	MIN
Input Common Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to 5.6			V	TYP
Common Mada Daiastian Datia	CMDD	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	88	71	62	40	N AIN I
Common Mode Rejection Ratio	CMRR	$V_S = 5.5V$, $V_{CM} = -0.1V$ to $5.6V$	76	60	58	dB	MIN
0 1 1/1 0:		$R_L = 5k\Omega$, $V_{OUT} = 0.1V$ to 4.9V	100	80	75	ID.	
Open-Loop Voltage Gain	A _{OL}	R_L = 100k Ω , V_{OUT} = 0.035V to 4.965V	105	85	76	dB	MIN
Input Offset Voltage Drift	ΔV _{OS} /ΔT		2.7			μV/°C	TYP
OUTPUT CHARACTERISTICS	l .						
	V _{OH}	$R_L = 100k\Omega$	4.997	4.980	4.970	V	MIN
	V _{OL}	$R_L = 100k\Omega$	5	20	30	mV	MAX
Output Voltage Swing	V _{OH}	$R_L = 10k\Omega$	4.992	4.970	4.960	V	MIN
	V _{OL}	$R_L = 10k\Omega$	8	30	40	mV	MAX
	I _{SOURCE}	$R_L = 10\Omega$ to $V_S/2$	84	60	45	- mA	
Output Current	I _{SINK}		75	60	45		MIN
POWER SUPPLY		l					
0 " 11" 5				2.1	2.5	V	MIN
Operating Voltage Range				5.5	5.5	V	MAX
Power Supply Rejection Ratio	PSRR	$V_S = 2.5V$ to 5.5V, $V_{CM} = 0.5V$	86	70	67	dB	MIN
Quiescent Current	IQ		48	69	84	μΑ	MAX
Supply Current when Disabled	I _{SD}	DISABLE = V _{IL}	10	3000		nA	MAX
DYNAMIC PERFORMANCE (C _L = 10	0pF)				I.	l	l
Gain-Bandwidth Product	GBP		1.1			MHz	TYP
Slew Rate	SR	G = +1, 2V Output Step	0.52			V/µs	TYP
Settling Time to 0.1%	ts	G = +1, 2V Output Step	5.3			μs	TYP
Overload Recovery Time		$V_{IN} \cdot G = V_S$	2.6			μs	TYP
NOISE PERFORMANCE	1	I	1		1	1	1
		f = 1kHz	27			nV/ √Hz	TYP
Input Voltage Noise Density	e _n	f = 10kHz	20			nV/√Hz	TYP

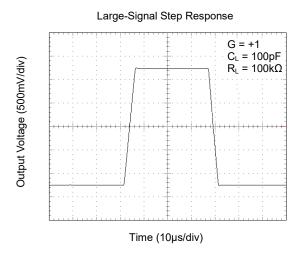

TYPICAL PERFORMANCE CHARACTERISTICS

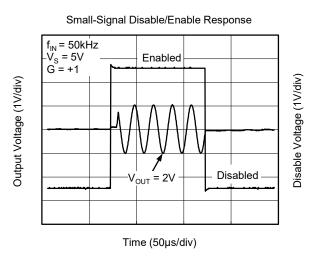


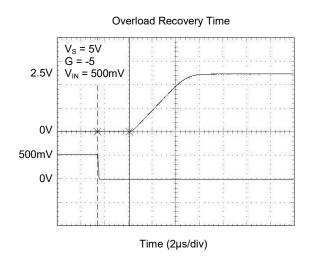


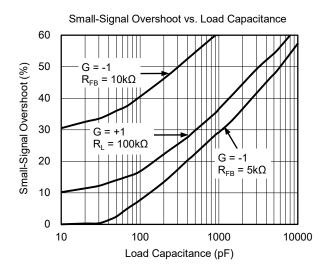


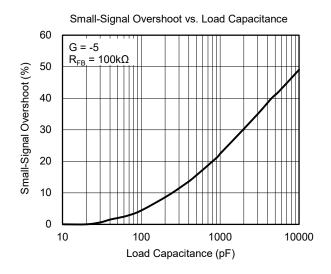


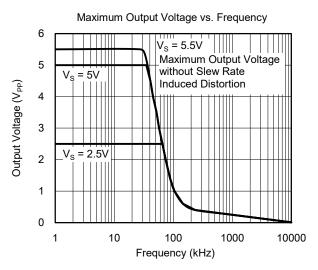


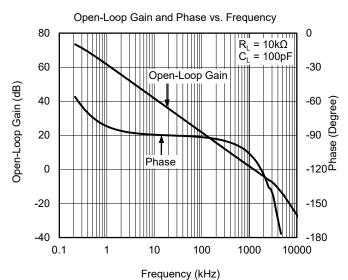

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

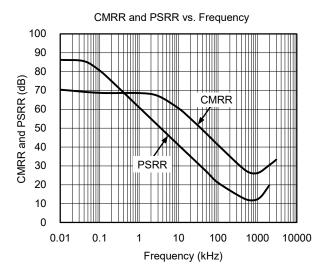


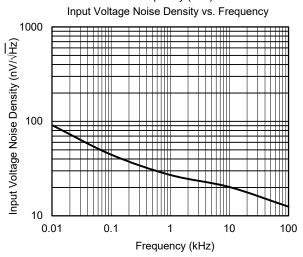


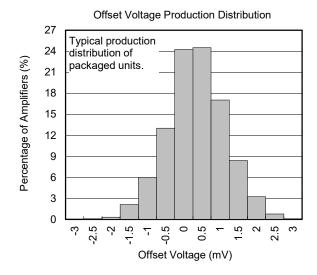







TYPICAL PERFORMANCE CHARACTERISTICS (continued)





TYPICAL PERFORMANCE CHARACTERISTICS (continued)

APPLICATION NOTES

Driving Capacitive Loads

The SGM8543 can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

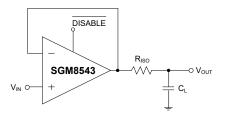


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting input with the output. C_{F} and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

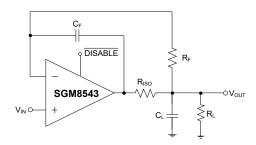


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power Supply Bypassing and Layout

The SGM8543 operates from either a single 2.1V to 5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

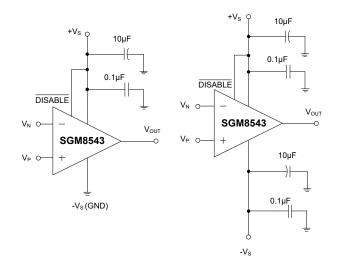


Figure 3. Amplifier with Bypass Capacitors

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

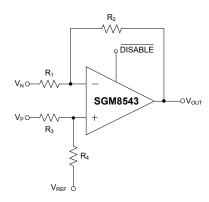


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

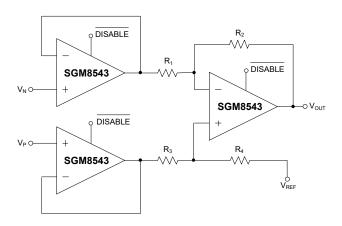


Figure 5. Instrumentation Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

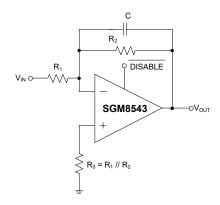


Figure 6. Active Low-Pass Filter

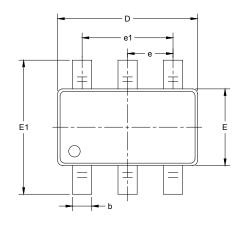
1.1MHz, 48µA, Rail-to-Rail I/O, CMOS Operational Amplifier with Shutdown

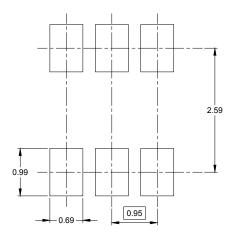
SGM8543

REVISION HISTORY

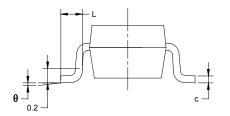
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

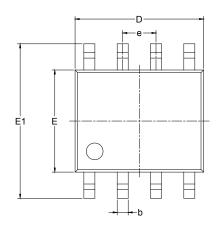
NOVEMBER 2018 - REV.A.1 to REV.A.2

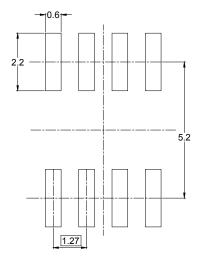

Added Open-Loop Gain and Phase vs. Frequency6	Added Open-Loop Gain and Phase vs. Fr
JANUARY 2013 – REV.A to REV.A.1	JANUARY 2013 – REV.A to REV.A.1
Added Tape and Reel Information	Added Tape and Reel Information

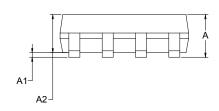

Changes from Original (NOVEMBER 2011) to REV.A

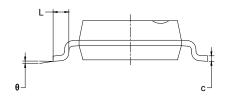
Changed from product preview to production dataAll
--


PACKAGE OUTLINE DIMENSIONS SOT-23-6

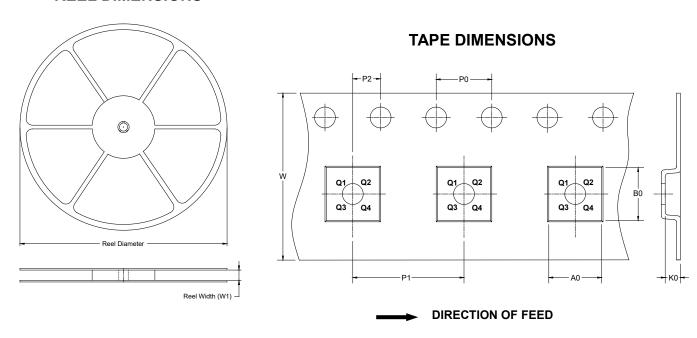

RECOMMENDED LAND PATTERN (Unit: mm)




Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104 0.116			
е	0.950	BSC	0.037 BSC			
e1	1.900 BSC		0.075	BSC		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0° 8°			


PACKAGE OUTLINE DIMENSIONS SOIC-8

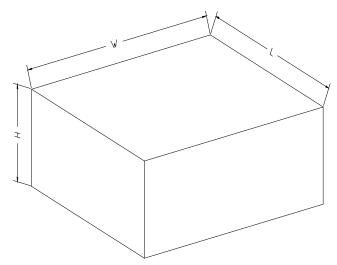
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches			
,	MIN	MIN MAX		MAX		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
Е	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228 0.244			
е	1.27 BSC		0.050 BSC			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0° 8°			

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-6	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5